PHYSICAL REVIEW E VOLUME 55, NUMBER 1 JANUARY 1997

Random walk on a linear chain with a quenched distribution of jump lengths
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We study the random walk of a particle on a linear chain, where a jump length 1 or 2 is assigned randomly
to each lattice site with probabilitg; andp,=1—p,, respectively. We find that the probabiligﬁff for the
particle to be at a site with jump length 1 is different fram which causes the diffusion coefficiebtto differ
from the mean-field result. A theory is developed that allows us to calcpfﬁtandD for all values ofp;. In
the limit p;— 0, the theory yields a nonanalytic dependence®fon p;,pS"™~ — p2inp,.
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[. INTRODUCTION neighbor sites(jump length 2, exhibits strong deviations
from a simple mean-field approach. These deviations are
Random walks in disordered systems have attracted muataused by two effectsi) The random walker stays longer in
attention in the past due to their importance in many physiclusters consisting of lattice sites with jump length 1 than in
cal, chemical, and biological processéfer reviews see clusters of the same size consisting of lattice sites with jump
[1-3]). In lattice models one usually considers one particldength 2 and(ii) isolated lattice sites with jump length 1,
that can hop among nearest-neighbor sites with random tranvhose nearest neighbors have jump length 2, can be over-
sition rates. These transition rates may fluctuate in time injumped.
dependent of the position of the walkétannealed disor-
der”) or they may be assigned randomly to the sites or bonds
of the lattice independent of timé‘quenched disorder).
The latter situation is more natural for most applications; Consider the random walk of one particle on a linear
e.g., the quenched transition rates may arise from a randorhain as shown in Fig. 1. To each lattice sit& jump length
energy landscape or some topological disorder present in the is assigned, which can assume two possible valyes]
material. More generally, one could consider the randomor |;=2 with probabilitiesp,; and p,=1—p;, respectively.
walk in a dynamic random structure, whose propertiesye will call a sitei a 1 site ifl;=1 and a 2 site otherwise. If
change in a characteristic timg. Then a crossover in the the walker staystaa 1 site, it can jump to one of the two
diffusion properties occurs from the behavior in the nearest-neighbor sites, while if it stayissa2 site, it can jump
guenched case for timéss 75 to the behavior in the annealed to one of the two next-nearest-neighbor sites. The time be-
case for time¢> 75. Both the annealed and quenched casesween two jumps is distributed according to a Poisson distri-
have been investigated in detail and most of the importanbution with mean waiting time. We will work with discrete
results can be found ifL—3]. time steps, choosing as time unit. Also, we will restrict our
When the random walker is allowed to jump farther thantreatment to the unbiased case, i.e., in each time step
to nearest-neighbor sites according to some distribytjasf ~ the walker jumps with equal probability 1/2 to the left or to
jump lengthsl, one may again distinguish between the an-the right. A possible path for the walker is shown in Fig. 1.
nealed and the quenched situation: In the first case, the jumiyote that only the jump lengths are quenched but not the
lengths vary in time independently of the position of thejump directions(in this case the motion would be determin-
walker, while in the latter they are fixed to the lattice sites.istic and the particle gets trapped
The annealed case usually presents no additional difficulty The probabilityP;(t) that the walker is at sité at time
and can be studied within a standard mean-field treatmentobeys the recursion relation
[4]. The guenched problem, however, is much more subtle
and so far has not been studied. This is certainly due to the 1
fact that a random walk with a quenched jump lengths dis- P;(t+1)= E[(Ii_z—1)Pi_2(t)+(2—Ii_1)Pi_1(t)
tribution is not a very realistic model to describe particle
diffusion in a random potential. However, it may be impor- (2=l )P (D) + (o= P ()],
tant in other situations such as, e.g., to describe tracer diffu-
sion in turbulent fluids by using the concept ofuyewalks ()
[5] or in recent experiments where chaotic transport is ob-
served in two-dimensional flow in a rapidly rotating annularwhich has to be solved subject to some given initial condi-
tank [6]. tion. We are interested in the diffusion properties in the sta-
We will show in this work that already the simplest case,tionary state. In a mean-field approach, one would substitute
i.e., a random walk on a linear chain, where the walker carthe individual I; in Eqg. (1) by their average value
jump either to nearestjump length 1 or to next-nearest- (l;)=p;+2p,=2—p; and the mean-square displacement of
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A

1
Pr=S[(li 2= 1P+ (2= 1) PP + (2= i) PR,
(12— P, ©)

By solving Eq. (3) one can calculate p¢" via

FIG. 1. Linear chain, where jump lengths 1 and 2 are assigneg)iff:@i'\‘:lpf%g_|i)>' where() denotes a disorder average
randomly to the lattice sites. The arrows indicate a possible diffuyer many chains with different configuratiofis}. We de-

sion path for the random walker.

the walker would be given by(x?(t))={(I?)t=(p,
+4p,)t=(4—3p,)t. Accordingly, we obtain for the mean-
field diffusion coefficient

4-3p
Dwr=— . 2

Ill. DEVIATIONS FROM THE MEAN-FIELD RESULT

In order to test up to what extent ER) gives a good
approximation we have determined the mean-square d
placementx?(t)) by Monte Carlo simulationg7]. When the

terminedP?® (and thusp¢™) numerically by exact enumera-
tion [8] of Eq. (1). By usingpS" in Eq. (2) instead ofp,, we

get a diffusion coefficient that is shown by the solid squares
in Fig. 2. Clearly, we find excellent agreement with the dif-
fusion coefficientD, i.e.,

4—3ps"
=— @
Hence we have to determine the effective distribution of
jump IengthspEff to obtain the correct diffusion coefficient.
(We have found that the analogous result holds true for more
general distributions of jump lengthg with finite second
moment, i.e., D=E|pF“I2.) As mentioned above, the linear

_relationship (x?(t))=2Dt is strictly valid only when the
'Starting points of the walker are weighted with the correct

equilibrium distribution. When the walker can start from

walker is allowed to make a few hundred jumps before itspach of the lattice sites with equal probability, the short-time

initial position its storedi.e., after “equilibration”), we find

that (x?(t))=2Dt for all timest. The diffusion coefficient
D(p1) as a function ofp, is shown in Fig. 2(open circleg

together with the mean-field result,,=(p;) (dashed ling

As can be seen from the figurB, is larger thanD,: for

small valuesp;=0.22, while for p;=0.22, D becomes
smaller thamD .

behavior would be given by the mean-field result and only
the long-time behavior would be determined Dy

In order to calculatep'fff analytically, we will use the fol-
lowing procedure. For a given configuratifh}, we subdi-
vide the chain in clusters of 1 and 2 sites as in percolation
theory[9]. A 1 cluster of sizes consists of a row 0§ 1 sites
with 2 sites at each end of the row. In an analogous manner

The reason for these deviations is that the probabilitya 2 cluster of size is defined. The random walker consecu-

p‘fﬁ to find the walker fia 1 site is different fronp;. Con-
sider a linear chain of finite but large lengthwith periodic
boundary conditions. Fot—« the probability P;(t) will
then approach an equilibrium distributi®f* which, accord-
ing to Eq.(1), is determined by
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FIG. 2. Diffusion coefficientD determined from the mean-
square displacement by Monte Carlo simulatiémsen circley and
calculated frompS™ [Eq. (4)] by applying the exact enumeration
technique(solid squares The dotted line indicates the mean-field
result and the solid line is drawn as a guide for the eye.

tively enters 1 and 2 clusters of arbitrary size. One can cal-
culate the average numbeyy(a) (j=1,2, a=1,... s) of
sites visited, if g cluster of sizes is entered at siter. After
averagingn; {(«) over all cluster sizes and all possible
initial positionsa, one obtains the average numbeof sites
visited, when ararbitrary j cluster is entered. From this we
obtain p¢" by

L
ng+ny’

pi'= (5)
In general, this procedure is difficult due to the existence
of 1 clusters of sizes=1, which we will call isolated 1 sites
in the following. These isolated 1 sites can never be entered
from a neighboring 2 cluster that consists of an odd number
of sites. As a consequence, one has to merge certain 2 clus-
ters into “effective 2 clusters” and the cluster statistics be-
comes complicated. However, one can apply a simpler ap-
proximate scheme, which we will present in Sec. IV. This
scheme neglects the merging of 2 clusters and succeeds in
reproducing the numericqﬂ'f“f values within an error of 2%,
but it fails to predict the correct values fa; andn, sepa-
rately. In Sec. V we then consider the general case taking
into account the merging of 2-clusters by isolated 1-sites.
This more elaborate treatment yields the correct dependence
of n; andn, on p;.



55 RANDOM WALK ON A LINEAR CHAIN WITH A ... 73

IV. APPROXIMATE TREATMENT ( a+1
_ N(s+1)/2 ) for s odd, o odd
We need first to calculate the average nummey(«) of 2
sites visited, if g cluster of sizes is entered at siter. Let us o
start with the 1 clustersj&1). The jumps of the particle N(s—1)/2 E) for s odd, o even
inside a 1 cluster of siza can be considered as a random nZS(a):<
walk between absorbing points at site 0 aidl1. For this ' atl f dd
problem it is possible to calculate the conditional probability Nsi2 T2 or s even, a0
Pa(r|ro;0,5+1) to find the walker at site aftern jumps, if
it started at site (r,ro=1, ... s). By using the method of ns/z( E) for s even, « even.
images we gef10] 2

(12

©

Po(r|ro;0.5+ 1):|2 [P.(r+21(s+1)|ro) In order to calculaten; andn, one now has to average

N s(a) andn,4(a) over all cluster sizes and all possible
initial conditions«. Following the cluster analysis 1], the

= Pa(=r=2l(s+1)[ro)], ®)  mean total numbem;  of j clusters withs sites on a long
chain of lengthN is mj,sszjS(l—pj)z. The probability
where w; s that aj cluster consists of sites is then
= dk , m; s
Palrlro)=| 5 cod(ke*~ro (7) Wi s= s =(1-p)p} . (13
n a2 PSR My a

is the conditional probability when no absorbing points are A 2 cluster can only be entered at a boundary site, so we

present. With the help of can seta=1 [due to symmetry the left and right boundary
site must not be distinguished,s(1)=n,4(s)]. Hence we
o T 2 7l obtain
;m exr{—2|l(s+1)k]=s+—llzw 5(k— =1/ ® B B
ny= 21 Wosnos(1)= 21 (W2,25- 1+ W2 2)Ns(1)
we obtain after simple transformations . .
2
P2
. =1+——. 14
Pu(r|ro;05+1) p1(1+p2) (14
S
= o9 T I)sin ™o, sin( il |). A 1 cluster can be entere@d) at a boundary sitec=1)
st+1i=1 s+1 s+1 st+1 or (b) at the next neighbor of a boundary site=2). Case

9) (@) can occur only if the walker before has entkee2 cluster
with an even number of sites, which we call an “even 2
cluster” (in the same way an “odd 2 cluster” is defined
The walker has to enter the even 2 cluster from one &@dg
the left boundary sibeand to escape it from the other side
(the right boundary sije Case(b) takes place when the
1 walker before has entered an arbitréeyen or odd 2 cluster
d(n|rg)= =[Pn(1]rg;0,5+ 1)+ Pu(s|ro;05+1)]. from the left boundary site and escaped it from the same left
2 boundary site or when the walker before has entered an odd
(10 2 cluster from the left boundary site and escaped it from the
opposite right boundary site. We denote the probability for
Hence we finally obtain, fong(a)=n;¢(a), event(a) by 7, and that for eventb) by 7,,. Given 7, and
7, One may calculatae,

The probabilityss(n|ro) for the walker to make exactly
jumps inside a cluster of siz& when it started at sitey, is
given by

nda)= 2 (L+n)yn|a)=(s+1)a—a? 1<ass. > >

n=0 n= Waz Wl,sns(1)+ WbE Wl,sns(z)
(11) s=1 s=2

Elligtfotgzt;iri\é%r?ogﬁdﬂn and notn since the initial site _ Wap2+;2 Wy mans(1) + mpng(2)]. (15)
The average number, ((«) of sites visited,fia 2 cluster

of sizes is entered at sitex can be readily calculated from Note that the second series starts frem2 and not from

ns(a) since the random walk inséda 2 cluster corresponds s=1 since an isolated 1 site can never be entered in(@se

to a random walk insigl a 1 cluster of half sizéby taking out  However, this method to treat the effect of isolated 1 sites is

all 2 sites that cannot be visitedepending on the sizeof  only approximate. When an isolated 1 site is not entered, it is

the 2 cluster and the initial site, we obtain actually overjumped and the 2 clusters on its left and right



74 RYSZARD KUTNER AND PHILIPP MAASS 55

side have to be regarded as one large 2 cluster. This merging
of 2 clusters due to the presence of isolated 1 sites has been

fully neglected.
Our approximate solution is complete if we knawy and

. Similarly as forn,s(«) above, we first calculate the

relevant escape probabilitigsleft” or “right” ) for the 1

clusters and then determine the analogous probabilities for

the 2 clusters by treating the random walk ires@l 2 cluster

as being insid a 1 cluster of half size. The probability

L(«) that the random walker lease 1 cluster of size via
the left boundary site, if it was initially at site, is

L _1§ 1la;0 1H)=1
s(a)_§n=07)n( |a1 S+1)= _S+1

(16)

and the corresponding probabilifgs(«) that it leaves a 1
cluster of sizes via the right boundary site is

1 a
Ry(@)= Engo Po(slai0s+1)=1-Ly(a)= 7
17

The probability 7, is determined by averaginBs(1) over
all even2 clusters,

% 2s 1 —p2
P1 e
E W xRs(1)= 9121 — ) p2|n( 1= p2>
(18)
In the same way we obtain

) oo

Ty= 521 (Wo 25— 1T Waq o) Lg(1)+ 321 Wa 2 1Rs(1)

(19

=1-1m,.

With 7, given by Eq.(18), it is easy to calculata; from
Eq. (15),

P1 P1
n,=(1-—|m,+2—, 20
! ( P2 Ta P2 20
and finallyp‘jff according to Eq(5),
2
— e7p2
2p+ pl(p23 P1) In( 2)
eff p2 1_p2
Pre P pupo-py) [eP2|
2 1\M27 M1
1+p;+ + In
P (T o) P> (1—p§)
(21

Figure 3a) showsp‘jff as a function ofp; (solid line) in

comparison with the values obtained from the exact enu-

10— ————2 10 (—— 77—
or @ Sy

0.8 :

0.6 |

04

02

— theory

0.0 Wl N
00 02 04 06 08 10 00 02 04 06 08 1.0
P4 P4

0 bt st s
107%030™10
)

FIG. 3. (a) Probabilityp‘fff obtained from the approximate theo-
retical treatmenfEq. (21)] as a function ofp; (solid line) in com-
parison with the results from the exact enumeration of(Eg(solid
squares The inset shows the behavior pff’/pi as a function of
p. in a semilogarithmic representatiotb) Mean numbem, and
n, of sites visited, when the walker enters an arbitrary 1 and 2
cluster. The symbols mark the results from Monte Carlo simulations
and the solid lines the results from the approximate th¢&iys.

(15) and(14)].

(the data points in the figure were obtained by Monte Carlo
simulations. Except for p; close to 1, the approximate
theory yields much smaller values for bath and n, than

the Monte Carlo simulations. This failure is due to the incor-
rect treatment of the overjumping and associated merging
effect: Under the condition that an isolated 1 site is entered,
the number of visited sites is always one but mof, as
implicitly assumed in Eq(15). Hencen,; should approach
one forp;—0 and not zero as predicted by Eg5). On the
other hand, the 2 clusters are effectively larger and accord-
ingly alson, is underestimated by the approximate theory.
Since both effects are mutually connected, the errons;in
andn, approximately cancel each other in the ratig/n,,
which determines the probabiligy:™.

V. GENERAL TREATMENT

We will now take into account the merging of “geomet-
ric” 2 clusters into “effective” 2 clusters caused by isolated
1 sites that cannot be visited. The definition of these effective
2 clusters depends on the way they are entered. More pre-
cisely, one has to distinguish between two situatignsThe
walker enters an effective 2 cluster finoa 1 cluster with
s=2 and(ii) the walker enters an effective 2 cluster from an
isolated 1 site.
Let us start with caséi). Without loss of generality, we

meration techniquésolid squares As can be seen from the can assume that the walker enters the effective 2 cluster from
figure, the agreement between the approximate theory antle left. Then we can describe the general situation as in Fig.
the “exact” numerics is very good; the data do not deviate4(a): The encircled plus denotes the 1 cluster, from which the

by more than 2%. Fap;— 0, Eq.(21) predicts a nonanalytic
dependence op¢" on p;, pS™~—2p2inp,, and indeed the
data are in nice agreement with this predictjsee the inset
of Fig. 3(@]. However, as shown in Fig.(B), the separate
dependence ofi; andn, on p; is not correctly described

walker enters the effective 2 cluster. The encircled dot de-
notes isolated 1 sites, which can be overjumped. They have
odd 2-clusters as neighbors consisting of;21 sites
(i=0,1,... k,andy;=1,2,...). Theencircled cross marks
the right end of the effective 2 cluster. This can be either an
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that each state is at least occupied by one particle. As shown
() @2‘/1_:1_ 6212:—1—~~-27-":1—®——ﬁ——® in Appendix,A(s,k) can be determined in the spirit of this
slightly modified Bose statistics with the result

b) 2 nzley 2esl In-ley B _
R O O-—-® A(s,k)z(i_i). 23

FIG. 4. General configuration®) if an effective 2 cluster is
entered fron a 1 cluster of size larger than one ail if an effec-
tive 2 cluster is entered from an isolated 1 site. Thesymbols

Accordingly, the final sum in Eq(22) is a binomial series
and can be calculated explicitly

mark isolated 1 sites, which can be overjumped, thesymbol psps
denotes the 1 cluster, from which the effective 2 cluster is entered wht) = 172 (24)
[1 cluster withs=2 in (a) and isolated 1 site irib)]; and the® ' z

symbols mark the ends of the effective 2 cluster. The dashed lines ) L

represent the geometric 2 clusters between the 1 clusters and the Next we consider casgi), i.e., the walker enters an ef-

numbers (2,2y,—1, ...) refer to their sizes. fective 2 cluster from an isolated 1 site. An isolated 1 site
can be visited only if one of its neighboring geometric 2

arbitrary 1 cluster if the siz@ of the neighboring geometric clusters_ consists of an even number o_f S|tes._W|thout loss of

2 cluster is even or it musteba 1 cluster of size larger than generality, we assume that the left neighbor is an even geo-

one if',é is odd. The number oflistinct sitess that can be Metric 2 cluster. The general situation can then be described

visited inside the effective 2 clusterss- 8+ 2!;1% , Where 6;13 infl]fig._4b): Agljain, thi encirc_:leld Cross rkr:ar_kslthe endg of
2,3—1=E~ i :é is odd and Z%:E i flé is even the effective 2 cluster, the encircled dot the isolated 1 sites,

s which can be overjumped, and the encircled plus denotes the
(B=[(1+p)/2], where[x] denotes the integer part 8. It oy jsolated 1 site, from which the effective 2 cluster is
is convenient to define this numberof distinct visitable

> ) ) ' entered. The sizs of the effective 2 cluster, i.e., the number
sites as the size of the effective 2 cluster. In this way Weyt qistinct visitable sites inside it is:a+’3+2k

. . .. 4 A i=1%i>
avoid later having to take out formally all nonvisitable S'tes’where,fg’:[(lJr,B)/Z].

as it was done in Sec. IV in connection with the geometric 2 - .
clusters. g We now can calculate the probabilitys(a) that if an

According to the general situation shown in Figay we effective 2 cluster is visited, it has sizeand is entered form
can calculate the probability(z%s) that if an effective 2 cluster 2" isolated 1 site, which has an even geometric 2 cluster

is visited, it has size and is entered fim a 1 cluster of size consisting of 2 sites as neighbor.
larger than one:

ZWR ()= > VPR3 PP
Zwi=p3(p3 i+ p3py) 2 g pesma T2 T2
2y—1 28-1,2, 28
- - Xp, ™ PPy TP P3P
> _Pip;" pa(p3 pi+p3py) 2 2o
Y1 =
T =vapip§“‘l[ pi(s‘“)+ﬁ+ 2
_ _ _ yios—a
+ PPy TPy Tpu(p3 o3 '
y1tv2tB=s 2yi—1
X 1~ + ...
+p3Ppy)+ P2 P1
2 s—1-«
_ pl) pl) s—1—a\/p K
— n3n25—1 — 1
= 1+ =|A(s,2)+|—| A(s,3)+--- —y p3p2s1 g
PPz D, (s,2) D, (s,3) v ,P1P5 kgo ( K )(pz
s—1
+ & A(S,S) :vapipg-'—a' (25)
2
1 . The factorv , takes into account the relative weight accord-
_ P1 ing to which the effective 2 cluster is entered from the iso-
_ 3,251 F1
=PaP2 go A(s.k+1) pz) ' (22 lated 1 site. It is possible to determine these factgysn a

self-consistent way, but then the calculations become very
HereZ is a normalization factor that will be determined be- lengthy and complicated. It is advantageous to make an ap-
low. The two terms in the factorpd?~'pZ+p5#p,) in the  proximation and to assume that for the effective 2 cluster to
second line of Eq(22) correspond to the two possibilities be entered from the isolated 1 site, the walker must before
that the rightmost geometric 2 cluster consists of an oddave entered the neighboring geometric 2 cluster with 2
('lézzﬁ_l) or even numberﬁzZB) of sites. The combi- Sites from the “left” end and must then have escaped
natorial factorA(s,k) equals the number of ways to add up this cluster via the “right” end. This implies
k integer numbers larger than 0 to a sepwhen taking into  Va=Ra(1)=1/(a+1) and, accordingly,
account their ordering. In other word&(s,k) is the number 3 sta
of ways to distributes identical (i.e., nondistinguishabje 2) P1P2

particles among distinguishable states given the constraint Was(a)= Z(a+1)’ (26)
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The normalization factoZ is given by fective 2 cluster via an even geometric boundary clusger (
- " St even in the configuration shown abgwend really to arrive
7= E 03ps + 2 2 I01I02 at an isolated 1 site [hence the factor
e p5Pp1p2/(p5 Py +p5° *p)=p5]. (i) The walker comes
. o1 from an effective 2 cluster that itself was entered before from
pz an isolated 1 site whose neighboring even geometric 2 clus-
—p1p2+p12 pzz a+1l’ @D ter had 2 sites[factor wi2(a)]. It escaped the effective 2

cluster via this even geometric 2 clusféactorL(a)] and it
The double sum oves and « can be calculated after inter- had to arrive at an isolated 1 Smctor pz) (|||) As in (||)

changing the summation order. The resulting expression isthe walker comes from an effective 2 cluster that itself was
2 entered from an isolated 1 siféactor ws?(a)]. But it es-
Z=— &In(l— p2). (28) gaped this effective 2 cluster on the other sitfactor
Rs(@)] and via an even geometric 2 cluster in order to arrive
Similar double sums are encountered in various formula&t &" isolated 1 sn@(;me factonpz as in casdi)].
below and they are calculated in an analogous way. The probabilityw; that a 1 cluster of size larger than
Knowing the cluster distribution of the effective 2 clus- One consists of exactly sites is
ters, we can determine the average nunmenf sites visited
if an arbitrary 2 cluster is entered: (0)_

wi=p3i ?p,. (32
» s—1
n —2 whdng(1)+ 2, 2, wh(a)fiy(a)

s =2 a=1 ° Again we have to distinguish between casg where a 1
2 2 2 cluster is entered at a boundary site, and ¢agewhere it is

1+p p p2(4—p1) i i
_ 1 2 —|3+p, 2 1 5. entered at the next neighbor of a boundary site. Et@rtan
2p1  2pyIn(1-p3) P1(1+p2) occur in all three cases, which contributedwd’} above,

(29) with the difference that now the three terms have to be mul-
tiplied by p; instead ofp, in order to count events only
Here we have defined where the walker arriveg a 1 cluster of size larger than one.
Hence we obtain for the probability,

1
fiy(@)= 5[n(a) +ny(a+1)], (30
where the two terms refer to the two possibilities that the wa=g—w(°>—p1p22 W5JR(1)+py 2 2 Wi (@)
. . . 2 §=2 a=1
walker enters an effective 2 cluster from an isolated 1 site by
a jump to the left or by a jump to the right. We will use the X[Lg(a)+ poRy(@)]. (33)
tilde in a similar manner below.
Next, we calculate the new cluster distribution for the 1
clusters. If an arbitrary 1 cluster is visited, the probability The probabilitys, can be calculated analogously #q (or
w{®) that it has sizes=1 (isolated 1 sitgis wi%):

wi%= > WyIR(1)p3
s=1 E WSS Lo(1)+piRe(1)]

+ > W(a)[Ls(@)po+Ry(a)p3] = 51
=2 a=1 +p12 2 W2 ()R ). (34)
p2 p2 s=2 a=1
—1+ 2 1

In(1-p3)  4In(1-p3) o o
One can easily verify that the cluster distribution for the 1
X[(p2+Inpy)2—ga(p3)+p3l, (3)  clusters is correctly normalized,

where Ls(a@)=[Ls(a@)+L(a+1))/2, R(a)=[Ry(a)
+Ry(a+1)]/2=1-Lg(a), and g,(x)==p_,;x"/k%. The
three different terms in the first line of E(B1) refer to the
following cases(i) The walker comes from an effective 2
cluster that itself was entered beforerfra 1 cluster of size
larger than onghence the factow(l)) For the walker to Finally, having determined the new cluster distribution for
arrive at an isolated 1 site, it must have entered and escapéide 1 clusters and the entrance probabilitesand my,, we
this effective 2 cluster at opposite boundary sftesnce the can calculate the mean numbey of sites visited when the
factor R¢(1)]. In particular, the walker had to leave the ef- walker enters an arbitrary 1 cluster:

©

WO+ (my+ wb)E wl=1. (35)
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0 o e a}nd leads to an enhanpement of the diffusion coefficient rela-
o tive to the mean-field result. For larger values of
P | (@) ] s (b) p: (p1=0.22), the overjumping effect is less important and
08 1 10 ] effect(i) causes the walker to diffuse more slowly than in the
» . annealed case.
06 - i It is clear that the effects$i) and (ii) are essential also
20 ey |2 | : n, when considering more general distributiong with
04 | 1 ‘ n, 1=1,2,3,.... Although the analytical calculations in Secs.
‘ ] — theory IV and V then become more difficult to perform, one can
11 40 L | expect that the diffusion coefficient in the quenched case is
02 r : usually smaller than in the annealed case, except for those
® yo¥i0%0 104 distributionsp, that give the short jump lengthsa compara-
00 1 P 0 & T tively small weight. The same effects will be also present for
00 02 04 06 08 10 00 02 04 06 08 10 random walks in higher dimensioms However, since the
1 1 surface-to-volume ratio of clusters with a given size in-

creases withl, the random walker can more easily “escape”
FIG. 5. (a) Probability p¢" obtained from the general treatment the fluctuations. We thus expect the differences between the
as a function o, (solid line) in comparison with the results from quenched and annealed case to become less pronounced for
the exact enumeration of E¢l). The inset shows the dependence higherd.

of p$"/pf on p; in a semilogarithmic representatici) Mean num- An interesting situation arises when the distributiprnas
bern; andn, of sites visited, when the walker enters an arbitrary 1no finite second moment as for a \he distribution,
and 2 cluster. The symbols mark the results from Monte Carl ~171=f with 0<f<2. Preliminary result§11] show that

simulations and the solid lines the results from the general theor

he effective distributiorp®” i iff h
[Eqs. (36) and (29)]. Yhe effective distributiorpf" decays in a different way than

P, pfﬁ~l‘1‘9, with an exponeng=f. As a consequence,
the “superdiffusive” behavior is slowed down in compari-
son to the annealed case. This might have important conse-
quences for the description of various phenomena byyLe
walks[12].

[}

ni= Wf]).—'— 522 W<1?s)[77an8( 1)+ mng(2)]

pz_p1+ 1
p;  In(1-pj)
pi ) ) ) ACKNOWLEDGMENTS
X 4—p§[(pz+lnp1) —02(p2)+pz]l—1]. (36

We are grateful to W. Dieterich and P. Pendzig for very
helpful discussions.
Figure 5 showsa) p§ﬁ= n./(ny+n,) and(b) n; andn,
as functions ofp; according to the theorysolid line) in
comparison with the same numerical results shown in Fig. 3.
The agreement between theory and numerics is now excel-
lent, also fom; andn,. Remarkably, in the limip,—0, the As stated in Sec. V abové\(s,k) equals the number of
general theory predicts the same nonanalytical dependenggays to distributes identical particles among distinguish-
of p§"onp;, p§'~—2piinp, [see the inset of Fig.()]. In  able states given the constraint that each state is at least
the opposite limit p,—1 (p,—0), we obtain occupied by one particle. Fér= 1 there is only one way: All
n;~2/p,—1/2 and n,~1+p,, while in the approximate particles have to be put into the single state. Hence
treatmentn, ~ 2/p,—5/2 andn,~ 1+ p3. Hence, even when A(s,1)=1, which agrees with%{ %)=1.
the number of isolated 1 sites becomes small, the conse- We now show by complete induction aftexfor arbitrary
quences of the overjumping and merging effect appear als=k) that Eq.(23) is valid. Let us therefore assume that
ready in the first corrections to the leading terms. A(s,k)=(3_1) for s=k+ 1. If we now add one state, we can
put either 1,2, .. ,s—k—1 or s—k particles into this addi-
tional state. For the remaining states there are then
VI. CONCLUSION s—1s—2,... k+1 ork particles left. Hence we obtain

APPENDIX: PROOF THAT A(S,k)=(§:i

In this work we have studied the consequences of a
quenched jump length distribution on the diffusion properties ~ A(SK+1)=A(s=1k)+A(s=2k)+--- +A(k,k)
s—k-1
0

of a single random walker. We have focused on the simplest s—k—1 K1
case, i.e., the random walk on a linear chain with a bimodal > A(tkk= X (J )
distribution of jump lengths 1 and 2. Two competing effects j=0 i= k=1
lead to pronounced deviations from the annealed gasan-

field resul}: (i) the longer residence time of the walker in 1 :<
clusters than in 2 cluster@f the same sizeand (ii) the

overjumping of isolated 1 sites. The overjumping effect

dominates the behavior for small concentratipp®f 1 sites  which completes the proof.

(A1)

s—k+k—1_s—1
k—1+1 /| k |’
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