
PHYSICAL REVIEW E JANUARY 1997VOLUME 55, NUMBER 1
Random walk on a linear chain with a quenched distribution of jump lengths

Ryszard Kutner1 and Philipp Maass2
1Department of Physics, Warsaw University, Hoz˙a 69, PL-00681 Warsaw, Poland
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We study the random walk of a particle on a linear chain, where a jump length 1 or 2 is assigned randomly
to each lattice site with probabilityp1 andp2512p1, respectively. We find that the probabilityp1

eff for the
particle to be at a site with jump length 1 is different fromp1, which causes the diffusion coefficientD to differ
from the mean-field result. A theory is developed that allows us to calculatep1

eff andD for all values ofp1. In
the limit p1→0, the theory yields a nonanalytic dependence ofp1

eff on p1 ,p1
eff;2p1

2lnp1.
@S1063-651X~96!09312-9#

PACS number~s!: 05.40.1j, 66.10.Cb, 66.30.Jt, 66.30.Lw
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I. INTRODUCTION

Random walks in disordered systems have attracted m
attention in the past due to their importance in many phy
cal, chemical, and biological processes~for reviews see
@1–3#!. In lattice models one usually considers one parti
that can hop among nearest-neighbor sites with random t
sition rates. These transition rates may fluctuate in time
dependent of the position of the walker~‘‘annealed disor-
der’’! or they may be assigned randomly to the sites or bo
of the lattice independent of time~‘‘quenched disorder’’!.
The latter situation is more natural for most applicatio
e.g., the quenched transition rates may arise from a ran
energy landscape or some topological disorder present in
material. More generally, one could consider the rand
walk in a dynamic random structure, whose propert
change in a characteristic timets . Then a crossover in the
diffusion properties occurs from the behavior in t
quenched case for timest!ts to the behavior in the anneale
case for timest@ts . Both the annealed and quenched ca
have been investigated in detail and most of the impor
results can be found in@1–3#.

When the random walker is allowed to jump farther th
to nearest-neighbor sites according to some distributionpl of
jump lengthsl , one may again distinguish between the a
nealed and the quenched situation: In the first case, the j
lengths vary in time independently of the position of t
walker, while in the latter they are fixed to the lattice site
The annealed case usually presents no additional diffic
and can be studied within a standard mean-field treatm
@4#. The quenched problem, however, is much more su
and so far has not been studied. This is certainly due to
fact that a random walk with a quenched jump lengths d
tribution is not a very realistic model to describe partic
diffusion in a random potential. However, it may be impo
tant in other situations such as, e.g., to describe tracer d
sion in turbulent fluids by using the concept of Le´vy walks
@5# or in recent experiments where chaotic transport is
served in two-dimensional flow in a rapidly rotating annu
tank @6#.

We will show in this work that already the simplest cas
i.e., a random walk on a linear chain, where the walker
jump either to nearest-~jump length 1! or to next-nearest-
551063-651X/97/55~1!/71~8!/$10.00
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neighbor sites~jump length 2!, exhibits strong deviations
from a simple mean-field approach. These deviations
caused by two effects:~i! The random walker stays longer i
clusters consisting of lattice sites with jump length 1 than
clusters of the same size consisting of lattice sites with ju
length 2 and~ii ! isolated lattice sites with jump length 1
whose nearest neighbors have jump length 2, can be o
jumped.

II. A SIMPLE RANDOM-WALK MODEL

Consider the random walk of one particle on a line
chain as shown in Fig. 1. To each lattice sitei a jump length
l i is assigned, which can assume two possible values,l i51
or l i52 with probabilitiesp1 and p2512p1, respectively.
We will call a sitei a 1 site ifl i51 and a 2 site otherwise. I
the walker stays at a 1 site, it can jump to one of the tw
nearest-neighbor sites, while if it stays at a 2 site, it can jump
to one of the two next-nearest-neighbor sites. The time
tween two jumps is distributed according to a Poisson dis
bution with mean waiting timet. We will work with discrete
time steps, choosingt as time unit. Also, we will restrict our
treatment to the unbiased case, i.e., in each time stept51
the walker jumps with equal probability 1/2 to the left or
the right. A possible path for the walker is shown in Fig.
Note that only the jump lengths are quenched but not
jump directions~in this case the motion would be determi
istic and the particle gets trapped!.

The probabilityPi(t) that the walker is at sitei at time
t obeys the recursion relation

Pi~ t11!5
1

2
@~ l i2221!Pi22~ t !1~22 l i21!Pi21~ t !

1~22 l i11!Pi11~ t !1~ l i1221!Pi12~ t !#,

~1!

which has to be solved subject to some given initial con
tion. We are interested in the diffusion properties in the s
tionary state. In a mean-field approach, one would substi
the individual l i in Eq. ~1! by their average value
^ l i&5p112p2522p1 and the mean-square displacement
71 © 1997 The American Physical Society



-

d

it

ilit

e

-

res
if-

of
t.
ore

r

ct
m
e

nly

ion

ner
u-
al-

e

ce

red
ber
clus-
e-
ap-
is
s in

ing
es.
nce

ne
ffu

-

n
ld

72 55RYSZARD KUTNER AND PHILIPP MAASS
the walker would be given by ^x2(t)&5^ l i
2&t5(p1

14p2)t5(423p1)t. Accordingly, we obtain for the mean
field diffusion coefficient

DMF5
423p1

2
. ~2!

III. DEVIATIONS FROM THE MEAN-FIELD RESULT

In order to test up to what extent Eq.~2! gives a good
approximation we have determined the mean-square
placement̂ x2(t)& by Monte Carlo simulations@7#. When the
walker is allowed to make a few hundred jumps before
initial position its stored~i.e., after ‘‘equilibration’’!, we find
that ^x2(t)&52Dt for all times t. The diffusion coefficient
D(p1) as a function ofp1 is shown in Fig. 2~open circles!
together with the mean-field resultDMF(p1) ~dashed line!.
As can be seen from the figure,D is larger thanDMF for
small valuesp1&0.22, while for p1*0.22, D becomes
smaller thanDMF .

The reason for these deviations is that the probab
p1
eff to find the walker at a 1 site is different fromp1. Con-

sider a linear chain of finite but large lengthN with periodic
boundary conditions. Fort→` the probabilityPi(t) will
then approach an equilibrium distributionPi

eq which, accord-
ing to Eq.~1!, is determined by

FIG. 1. Linear chain, where jump lengths 1 and 2 are assig
randomly to the lattice sites. The arrows indicate a possible di
sion path for the random walker.

FIG. 2. Diffusion coefficientD determined from the mean
square displacement by Monte Carlo simulations~open circles! and
calculated fromp1

eff @Eq. ~4!# by applying the exact enumeratio
technique~solid squares!. The dotted line indicates the mean-fie
result and the solid line is drawn as a guide for the eye.
is-

s

y

Pi
eq5

1

2
@~ l i2221!Pi22

eq 1~22 l i21!Pi21
eq 1~22 l i11!Pi11

eq

1~ l i1221!Pi12
eq #. ~3!

By solving Eq. ~3! one can calculate p1
eff via

p1
eff5^( i51

N Pi
eq(22 l i)&, where^& denotes a disorder averag

over many chains with different configurations$ l i%. We de-
terminedPi

eq ~and thusp1
eff) numerically by exact enumera

tion @8# of Eq. ~1!. By usingp1
eff in Eq. ~2! instead ofp1, we

get a diffusion coefficient that is shown by the solid squa
in Fig. 2. Clearly, we find excellent agreement with the d
fusion coefficientD, i.e.,

D5
423p1

eff

2
. ~4!

Hence we have to determine the effective distribution
jump lengthsp1

eff to obtain the correct diffusion coefficien
~We have found that the analogous result holds true for m
general distributions of jump lengthspl with finite second
moment, i.e., 2D5( l pl

effl 2.! As mentioned above, the linea
relationship ^x2(t)&52Dt is strictly valid only when the
starting points of the walker are weighted with the corre
equilibrium distribution. When the walker can start fro
each of the lattice sites with equal probability, the short-tim
behavior would be given by the mean-field result and o
the long-time behavior would be determined byD.

In order to calculatep1
eff analytically, we will use the fol-

lowing procedure. For a given configuration$ l i%, we subdi-
vide the chain in clusters of 1 and 2 sites as in percolat
theory@9#. A 1 cluster of sizes consists of a row ofs 1 sites
with 2 sites at each end of the row. In an analogous man
a 2 cluster of sizes is defined. The random walker consec
tively enters 1 and 2 clusters of arbitrary size. One can c
culate the average numbernj ,s(a) ( j51,2, a51, . . . ,s) of
sites visited, if aj cluster of sizes is entered at sitea. After
averagingnj ,s(a) over all cluster sizess and all possible
initial positionsa, one obtains the average numbernj of sites
visited, when anarbitrary j cluster is entered. From this w
obtainp1

eff by

p1
eff5

n1
n11n2

. ~5!

In general, this procedure is difficult due to the existen
of 1 clusters of sizes51, which we will call isolated 1 sites
in the following. These isolated 1 sites can never be ente
from a neighboring 2 cluster that consists of an odd num
of sites. As a consequence, one has to merge certain 2
ters into ‘‘effective 2 clusters’’ and the cluster statistics b
comes complicated. However, one can apply a simpler
proximate scheme, which we will present in Sec. IV. Th
scheme neglects the merging of 2 clusters and succeed
reproducing the numericalp1

eff values within an error of 2%,
but it fails to predict the correct values forn1 andn2 sepa-
rately. In Sec. V we then consider the general case tak
into account the merging of 2-clusters by isolated 1-sit
This more elaborate treatment yields the correct depende
of n1 andn2 on p1.
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55 73RANDOM WALK ON A LINEAR CHAIN WITH A . . .
IV. APPROXIMATE TREATMENT

We need first to calculate the average numbernj ,s(a) of
sites visited, if aj cluster of sizes is entered at sitea. Let us
start with the 1 clusters (j51). The jumps of the particle
inside a 1 cluster of sizes can be considered as a rando
walk between absorbing points at site 0 ands11. For this
problem it is possible to calculate the conditional probabi
Pn(r ur 0 ;0,s11) to find the walker at siter aftern jumps, if
it started at siter 0 (r ,r 051, . . . ,s). By using the method of
images we get@10#

Pn~r ur 0 ;0,s11!5 (
l52`

`

@Pn„r12l ~s11!ur 0…

2Pn„2r22l ~s11!ur 0…#, ~6!

where

Pn~r ur 0!5E
2p

p dk

2p
cosn~k!eik~r2r0! ~7!

is the conditional probability when no absorbing points a
present. With the help of

(
l52`

`

exp@22i l ~s11!k#5
p

s11 (
l52`

`

dS k2
p l

s11D , ~8!

we obtain after simple transformations

Pn~r ur 0 ;0,s11!

5
2

s11(l51

s

cosnS p

s11
l D sinS pr 0

s11
l D sinS pr

s11
l D .

~9!

The probabilitycs(nur 0) for the walker to make exactlyn
jumps inside a cluster of sizes, when it started at siter 0, is
given by

cs~nur 0!5
1

2
@Pn~1ur 0 ;0,s11!1Pn~sur 0 ;0,s11!#.

~10!

Hence we finally obtain, forns(a)[n1,s(a),

ns~a!5 (
n50

`

~11n!cs~nua!5~s11!a2a2, 1<a<s.

~11!

~Note that we averaged 11n and notn since the initial site
has to be counted too.!

The average numbern2,s(a) of sites visited, if a 2 cluster
of sizes is entered at sitea can be readily calculated from
ns(a) since the random walk inside a 2 cluster correspond
to a random walk inside a 1 cluster of half size~by taking out
all 2 sites that cannot be visited!. Depending on the sizes of
the 2 cluster and the initial sitea, we obtain
e

n2,s~a!55
n~s11!/2S a11

2 D for s odd, a odd

n~s21!/2S a

2 D for s odd, a even

ns/2S a11

2 D for s even, a odd

ns/2S a

2 D for s even, a even.

~12!

In order to calculaten1 and n2 one now has to averag
n1,s(a) andn2,s(a) over all cluster sizess and all possible
initial conditionsa. Following the cluster analysis in@9#, the
mean total numbermj ,s of j clusters withs sites on a long
chain of lengthN is mj ,s5Npj

s(12pj )
2. The probability

wj ,s that a j cluster consists ofs sites is then

wj ,s5
mj ,s

(s51
` mj ,s

5~12pj !pj
s21 . ~13!

A 2 cluster can only be entered at a boundary site, so
can seta51 @due to symmetry the left and right bounda
site must not be distinguished,n2,s(1)5n2,s(s)#. Hence we
obtain

n25(
s51

`

w2,sn2,s~1!5(
s51

`

~w2,2s211w2,2s!ns~1!

511
p2
2

p1~11p2!
. ~14!

A 1 cluster can be entered~a! at a boundary site (a51)
or ~b! at the next neighbor of a boundary site (a52). Case
~a! can occur only if the walker before has entered a 2 cluster
with an even number of sites, which we call an ‘‘even
cluster’’ ~in the same way an ‘‘odd 2 cluster’’ is defined!.
The walker has to enter the even 2 cluster from one side~say
the left boundary site! and to escape it from the other sid
~the right boundary site!. Case ~b! takes place when the
walker before has entered an arbitrary~even or odd! 2 cluster
from the left boundary site and escaped it from the same
boundary site or when the walker before has entered an
2 cluster from the left boundary site and escaped it from
opposite right boundary site. We denote the probability
event~a! by pa and that for event~b! by pb . Givenpa and
pb one may calculaten1,

n15pa(
s51

`

w1,sns~1!1pb(
s52

`

w1,sns~2!

5pap21(
s52

`

w1,s@pans~1!1pbns~2!#. ~15!

Note that the second series starts froms52 and not from
s51 since an isolated 1 site can never be entered in case~b!.
However, this method to treat the effect of isolated 1 site
only approximate. When an isolated 1 site is not entered,
actually overjumped and the 2 clusters on its left and ri
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74 55RYSZARD KUTNER AND PHILIPP MAASS
side have to be regarded as one large 2 cluster. This mer
of 2 clusters due to the presence of isolated 1 sites has
fully neglected.

Our approximate solution is complete if we knowpa and
pb . Similarly as forn2,s(a) above, we first calculate th
relevant escape probabilities~‘‘left’’ or ‘‘right’’ ! for the 1
clusters and then determine the analogous probabilities
the 2 clusters by treating the random walk inside a 2 cluster
as being inside a 1 cluster of half size. The probabilit
Ls(a) that the random walker leaves a 1 cluster of sizes via
the left boundary site, if it was initially at sitea, is

Ls~a!5
1

2(n50

`

Pn~1ua;0,s11!512
a

s11
~16!

and the corresponding probabilityRs(a) that it leaves a 1
cluster of sizes via the right boundary site is

Rs~a!5
1

2(n50

`

Pn~sua;0,s11!512Ls~a!5
a

s11
.

~17!

The probabilitypa is determined by averagingRs(1) over
all even2 clusters,

pa5(
s51

`

w2,2sRs~1!5p1(
s51

` p2
2s21

s11
5
p1
p2
3 lnS e2p2

2

12p2
2D .

~18!

In the same way we obtain

pb5(
s51

`

~w2,2s211w2,2s!Ls~1!1(
s51

`

w2,2s21Rs~1!

512pa . ~19!

With pa given by Eq.~18!, it is easy to calculaten1 from
Eq. ~15!,

n15S 12
p1
p2

Dpa12
p1
p2
, ~20!

and finallyp1
eff according to Eq.~5!,

p1
eff5

2p11
p1~p22p1!

p2
3 lnS e2p2

2

12p2
2D

11p11
p2
3

p1~11p2!
1
p1~p22p1!

p2
3 lnS e2p2

2

12p2
2D .

~21!

Figure 3~a! showsp1
eff as a function ofp1 ~solid line! in

comparison with the values obtained from the exact e
meration technique~solid squares!. As can be seen from th
figure, the agreement between the approximate theory
the ‘‘exact’’ numerics is very good; the data do not devia
by more than 2%. Forp1→0, Eq.~21! predicts a nonanalytic
dependence ofp1

eff on p1 , p1
eff;22p1

2lnp1, and indeed the
data are in nice agreement with this prediction@see the inset
of Fig. 3~a!#. However, as shown in Fig. 3~b!, the separate
dependence ofn1 and n2 on p1 is not correctly described
ing
en

or

-

nd

~the data points in the figure were obtained by Monte Carl
simulations!. Except for p1 close to 1, the approximate
theory yields much smaller values for bothn1 andn2 than
the Monte Carlo simulations. This failure is due to the incor
rect treatment of the overjumping and associated mergin
effect: Under the condition that an isolated 1 site is entere
the number of visited sites is always one but notpa , as
implicitly assumed in Eq.~15!. Hencen1 should approach
one forp1→0 and not zero as predicted by Eq.~15!. On the
other hand, the 2 clusters are effectively larger and accor
ingly also n2 is underestimated by the approximate theory
Since both effects are mutually connected, the errors inn1
andn2 approximately cancel each other in the ration1 /n2,
which determines the probabilityp1

eff .

V. GENERAL TREATMENT

We will now take into account the merging of ‘‘geomet-
ric’’ 2 clusters into ‘‘effective’’ 2 clusters caused by isolated
1 sites that cannot be visited. The definition of these effectiv
2 clusters depends on the way they are entered. More p
cisely, one has to distinguish between two situations:~i! The
walker enters an effective 2 cluster from a 1 cluster with
s>2 and~ii ! the walker enters an effective 2 cluster from an
isolated 1 site.

Let us start with case~i!. Without loss of generality, we
can assume that the walker enters the effective 2 cluster fro
the left. Then we can describe the general situation as in F
4~a!: The encircled plus denotes the 1 cluster, from which th
walker enters the effective 2 cluster. The encircled dot de
notes isolated 1 sites, which can be overjumped. They ha
odd 2-clusters as neighbors consisting of 2g i21 sites
( i50,1, . . . ,k, andg i51,2, . . . ). Theencircled cross marks
the right end of the effective 2 cluster. This can be either a

FIG. 3. ~a! Probabilityp1
eff obtained from the approximate theo-

retical treatment@Eq. ~21!# as a function ofp1 ~solid line! in com-
parison with the results from the exact enumeration of Eq.~1! ~solid
squares!. The inset shows the behavior ofp1

eff/p1
2 as a function of

p1 in a semilogarithmic representation.~b! Mean numbern1 and
n2 of sites visited, when the walker enters an arbitrary 1 and
cluster. The symbols mark the results from Monte Carlo simulation
and the solid lines the results from the approximate theory@Eqs.
~15! and ~14!#.



-

own
s

-
ite
2
s of
eo-
ibed
of
tes,
the
is
r

ster

d-
o-

ery
ap-
r to
ore
2
ed

55 75RANDOM WALK ON A LINEAR CHAIN WITH A . . .
arbitrary 1 cluster if the sizeb̃ of the neighboring geometric
2 cluster is even or it must be a 1 cluster of size larger than
one if b̃ is odd. The number ofdistinct sitess that can be
visited inside the effective 2 cluster iss5b1( i51

k g i , where
2b215b̃ if b̃ is odd and 2b5b̃ if b̃ is even
„b5@(11b̃)/2#, where@x# denotes the integer part ofx…. It
is convenient to define this numbers of distinct visitable
sites as the size of the effective 2 cluster. In this way w
avoid later having to take out formally all nonvisitable sites
as it was done in Sec. IV in connection with the geometric
clusters.

According to the general situation shown in Fig. 4~a!, we
can calculate the probabilityw2,s

(1) that if an effective 2 cluster
is visited, it has sizes and is entered from a 1 cluster of size
larger than one:

Zw2,s
~1!5p1

2~p2
2s21p1

21p2
2sp1!

1 (
g11b5s

p1
2p2

2g121p1~p2
2b21p1

21p2
2bp1!

1 (
g11g21b5s

p1
2p2

2g121p1p2
2g221p1~p2

2b21p1
2

1p2
2bp1!1•••

5p1
3p2

2s21F11S p1p2DA~s,2!1S p1p2D
2

A~s,3!1•••

1S p1p2D
s21

A~s,s!G
5p1

3p2
2s21(

k50

s21

A~s,k11!S p1p2D
k

. ~22!

HereZ is a normalization factor that will be determined be
low. The two terms in the factor (p2

2b21p1
21p2

2bp1) in the
second line of Eq.~22! correspond to the two possibilities
that the rightmost geometric 2 cluster consists of an od
(b̃52b21) or even number (b̃52b) of sites. The combi-
natorial factorA(s,k) equals the number of ways to add up
k integer numbers larger than 0 to a sums, when taking into
account their ordering. In other words,A(s,k) is the number
of ways to distributes identical ~i.e., nondistinguishable!
particles amongk distinguishable states given the constrain

FIG. 4. General configurations~a! if an effective 2 cluster is
entered from a 1 cluster of size larger than one and~b! if an effec-
tive 2 cluster is entered from an isolated 1 site. The( symbols
mark isolated 1 sites, which can be overjumped, the% symbol
denotes the 1 cluster, from which the effective 2 cluster is entere
@1 cluster withs>2 in ~a! and isolated 1 site in~b!#; and the^

symbols mark the ends of the effective 2 cluster. The dashed lin
represent the geometric 2 clusters between the 1 clusters and
numbers (2a,2g121, . . .! refer to their sizes.
e
,
2

d

t

that each state is at least occupied by one particle. As sh
in Appendix,A(s,k) can be determined in the spirit of thi
slightly modified Bose statistics with the result

A~s,k!5S s21
k21D . ~23!

Accordingly, the final sum in Eq.~22! is a binomial series
and can be calculated explicitly

w2,s
~1!5

p1
3p2

s

Z
. ~24!

Next we consider case~ii !, i.e., the walker enters an ef
fective 2 cluster from an isolated 1 site. An isolated 1 s
can be visited only if one of its neighboring geometric
clusters consists of an even number of sites. Without los
generality, we assume that the left neighbor is an even g
metric 2 cluster. The general situation can then be descr
as in Fig. 4~b!: Again, the encircled cross marks the ends
the effective 2 cluster, the encircled dot the isolated 1 si
which can be overjumped, and the encircled plus denotes
now isolated 1 site, from which the effective 2 cluster
entered. The sizes of the effective 2 cluster, i.e., the numbe
of distinct visitable sites inside it, iss5a1b1( i51

k g i ,
whereb5@(11b̃)/2#.

We now can calculate the probabilityw2,s
(2)(a) that if an

effective 2 cluster is visited, it has sizes and is entered form
an isolated 1 site, which has an even geometric 2 clu
consisting of 2a sites as neighbor:

Zw2,s
~2!~a!5 (

b1g11•••1gk5s2a
vap1p2

2ap1p2
2g121

•••

3p2
2gk21p1~p2

2b21p1
21p2

2bp1!

5vap1
3p2

2a21Fp22~s2a!1 (
b1g15s2a

p2
2b

3p2
2g121p11•••G

5vap1
3p2

2s21 (
k50

s212a S s212a
k D S p1p2D

k

5vap1
3p2

s1a . ~25!

The factorva takes into account the relative weight accor
ing to which the effective 2 cluster is entered from the is
lated 1 site. It is possible to determine these factorsva in a
self-consistent way, but then the calculations become v
lengthy and complicated. It is advantageous to make an
proximation and to assume that for the effective 2 cluste
be entered from the isolated 1 site, the walker must bef
have entered the neighboring geometric 2 cluster witha
sites from the ‘‘left’’ end and must then have escap
this cluster via the ‘‘right’’ end. This implies
va.Ra(1)51/(a11) and, accordingly,

w2,s
~2!~a!5

p1
3p2

s1a

Z~a11!
. ~26!
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76 55RYSZARD KUTNER AND PHILIPP MAASS
The normalization factorZ is given by

Z5(
s51

`

p1
3p2

s1(
s52

`

(
a51

s21 p1
3p2

s1a

a11

5p1
2p21p1

3(
s52

`

p2
s (

a51

s21 p2
a

a11
. ~27!

The double sum overs anda can be calculated after inter
changing the summation order. The resulting expression

Z52
p1
2

p2
ln~12p2

2!. ~28!

Similar double sums are encountered in various formu
below and they are calculated in an analogous way.

Knowing the cluster distribution of the effective 2 clu
ters, we can determine the average numbern2 of sites visited
if an arbitrary 2 cluster is entered:

n25(
s51

`

w2,s
~1!ns~1!1(

s52

`

(
a51

s21

w2,s
~2!~a!ñs~a!

52
11p1
2p1

2
p2
2

2p1ln~12p2
2!

F31p11
p2
2~42p1

2!

p1~11p2!
2G .

~29!

Here we have defined

ñs~a!5
1

2
@ns~a!1ns~a11!#, ~30!

where the two terms refer to the two possibilities that
walker enters an effective 2 cluster from an isolated 1 site
a jump to the left or by a jump to the right. We will use th
tilde in a similar manner below.

Next, we calculate the new cluster distribution for the
clusters. If an arbitrary 1 cluster is visited, the probabil
w1,1
(0) that it has sizes51 ~isolated 1 site! is

w1,1
~0!5(

s51

`

w2,s
~1!Rs~1!p2

2

1(
s52

`

(
a51

s21

w2,s
~2!~a!@ L̃s~a!p21R̃s~a!p2

2#

511
p2
2

ln~12p2
2!

2
p1
2

4ln~12p2
2!

3@~p21 lnp1!
22g2~p2

2!1p2
2#, ~31!

where L̃s(a)5@Ls(a)1Ls(a11)#/2, R̃s(a)5@Rs(a)
1Rs(a11)#/2512L̃s(a), and g2(x)5(k51

` xk/k2. The
three different terms in the first line of Eq.~31! refer to the
following cases.~i! The walker comes from an effective
cluster that itself was entered before from a 1 cluster of size
larger than one~hence the factorw2,s

(1)). For the walker to
arrive at an isolated 1 site, it must have entered and esc
this effective 2 cluster at opposite boundary sites@hence the
factorRs(1)#. In particular, the walker had to leave the e
s

e
y

ed

fective 2 cluster via an even geometric boundary clusterb̃
even in the configuration shown above! and really to arrive
at an isolated 1 site @hence the factor
p2
2bp1p2 /(p2

2bp11p2
2b21p1

2)5p2
2#. ~ii ! The walker comes

from an effective 2 cluster that itself was entered before fr
an isolated 1 site whose neighboring even geometric 2 c
ter had 2a sites@factorw2,s

(2)(a)#. It escaped the effective 2
cluster via this even geometric 2 cluster@factor L̃s(a)# and it
had to arrive at an isolated 1 site~factor p2). ~iii ! As in ~ii !,
the walker comes from an effective 2 cluster that itself w
entered from an isolated 1 site@factor w2,s

(2)(a)#. But it es-
caped this effective 2 cluster on the other side@factor
R̃s(a)# and via an even geometric 2 cluster in order to arr
at an isolated 1 site@same factorp2

2 as in case~i!#.
The probabilityw1,s

(0) that a 1 cluster of size larger tha
one consists of exactlys sites is

w1,s
~0!5p1

s22p2 . ~32!

Again we have to distinguish between case~a!, where a 1
cluster is entered at a boundary site, and case~b!, where it is
entered at the next neighbor of a boundary site. Event~a! can
occur in all three cases, which contributed tow1,1

(0) above,
with the difference that now the three terms have to be m
tiplied by p1 instead ofp2 in order to count events only
where the walker arrives at a 1 cluster of size larger than one
Hence we obtain for the probabilitypa

pa5
p1
p2
w1,1

~0!5p1p2(
s51

`

w2,s
~1!Rs~1!1p1(

s52

`

(
a51

s21

w2,s
~2!~a!

3@ L̃s~a!1p2R̃s~a!#. ~33!

The probabilitypb can be calculated analogously topa ~or
w1,1
(0)):

pb5(
s51

`

w2,s
~1!@Ls~1!1p1Rs~1!#

1p1(
s52

`

(
a51

s21

w2,s
~2!~a!R̃s~a!. ~34!

One can easily verify that the cluster distribution for the
clusters is correctly normalized,

w1,1
~0!1~pa1pb!(

s52

`

w1,s
~0!51 . ~35!

Finally, having determined the new cluster distribution f
the 1 clusters and the entrance probabilitiespa andpb , we
can calculate the mean numbern1 of sites visited when the
walker enters an arbitrary 1 cluster:
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n15w1,1
~0!1(

s52

`

w1,s
~0!@pans~1!1pbns~2!#

5
p22p1
p2
2 1

1

ln~12p2
2!

3S p1
2

4p2
2 @~p21 lnp1!

22g2~p2
2!1p2

2#21D . ~36!

Figure 5 shows~a! p1
eff5n1 /(n11n2) and ~b! n1 andn2

as functions ofp1 according to the theory~solid line! in
comparison with the same numerical results shown in Fig.
The agreement between theory and numerics is now exc
lent, also forn1 andn2. Remarkably, in the limitp1→0, the
general theory predicts the same nonanalytical depende
of p1

eff on p1 , p1
eff;22p1

2lnp1 @see the inset of Fig. 5~b!#. In
the opposite limit p1→1 (p2→0), we obtain
n1;2/p221/2 and n2;11p2, while in the approximate
treatmentn1;2/p225/2 andn2;11p2

2. Hence, even when
the number of isolated 1 sites becomes small, the con
quences of the overjumping and merging effect appear
ready in the first corrections to the leading terms.

VI. CONCLUSION

In this work we have studied the consequences of
quenched jump length distribution on the diffusion properti
of a single random walker. We have focused on the simpl
case, i.e., the random walk on a linear chain with a bimod
distribution of jump lengths 1 and 2. Two competing effec
lead to pronounced deviations from the annealed case~mean-
field result!: ~i! the longer residence time of the walker in
clusters than in 2 clusters~of the same size! and ~ii ! the
overjumping of isolated 1 sites. The overjumping effe
dominates the behavior for small concentrationsp1 of 1 sites

FIG. 5. ~a! Probabilityp1
eff obtained from the general treatmen

as a function ofp1 ~solid line! in comparison with the results from
the exact enumeration of Eq.~1!. The inset shows the dependenc
of p1

eff/p1
2 onp1 in a semilogarithmic representation.~b! Mean num-

bern1 andn2 of sites visited, when the walker enters an arbitrary
and 2 cluster. The symbols mark the results from Monte Ca
simulations and the solid lines the results from the general the
@Eqs.~36! and ~29!#.
3.
el-

ce

e-
l-

a
s
st
l

t

and leads to an enhancement of the diffusion coefficient r
tive to the mean-field result. For larger values
p1 (p1*0.22), the overjumping effect is less important a
effect~i! causes the walker to diffuse more slowly than in t
annealed case.

It is clear that the effects~i! and ~ii ! are essential also
when considering more general distributionspl with
l51,2,3,. . . . Although the analytical calculations in Sec
IV and V then become more difficult to perform, one ca
expect that the diffusion coefficient in the quenched cas
usually smaller than in the annealed case, except for th
distributionspl that give the short jump lengthsl a compara-
tively small weight. The same effects will be also present
random walks in higher dimensionsd. However, since the
surface-to-volume ratio ofl clusters with a given size in
creases withd, the random walker can more easily ‘‘escape
the fluctuations. We thus expect the differences between
quenched and annealed case to become less pronounce
higherd.

An interesting situation arises when the distributionpl has
no finite second moment as for a Le´vy distribution,
pl; l212 f with 0, f,2. Preliminary results@11# show that
the effective distributionpl

eff decays in a different way than
pl , pl

eff; l212g, with an exponentg> f . As a consequence
the ‘‘superdiffusive’’ behavior is slowed down in compar
son to the annealed case. This might have important co
quences for the description of various phenomena by L´vy
walks @12#.
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APPENDIX: PROOF THAT A„s,k…5„k21
s21

…

As stated in Sec. V above,A(s,k) equals the number o
ways to distributes identical particles amongk distinguish-
able states given the constraint that each state is at
occupied by one particle. Fork51 there is only one way: All
particles have to be put into the single state. Hen
A(s,1)51, which agrees with (0

s21)51.
We now show by complete induction afterk ~for arbitrary

s>k) that Eq. ~23! is valid. Let us therefore assume th
A(s,k)5(k21

s21) for s>k11. If we now add one state, we ca
put either 1,2,. . . ,s2k21 or s2k particles into this addi-
tional state. For the remainingk states there are the
s21,s22, . . . ,k11 or k particles left. Hence we obtain

A~s,k11!5A~s21,k!1A~s22,k!1•••1A~k,k!

5 (
j50

s2k21

A~ j1k,k!5 (
j50

s2k21 S j1k21
k21 D

5S s2k1k21
k2111 D5S s21

k D , ~A1!

which completes the proof.
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